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UwEll INFII?ITE cYLINDERsIN SUPERSONICFLow AND

ON

A COMPARISON WITH EXPERIWN’JML DATA

By Ivan E. E!eckwith,

SUMMARY

A theoretical method is presented for the calculation of heat trans-
fer in the laminar boundary layer on yswed infinite cylinders in compres-
sible flow with a Prandtl number near unity. The method may be applied
to a cylinder of arbitrary cross section and arbitrary chordwise wall-
temperature distribution. General expressions are derived for the heat
transfer and recovery factor in the vicinity of the stagnation line. The
expression for the recovery factor and the chordwise velocity profile at
the stagnation line for zero heat transfer are in good agreement with the
results of other theoretical analyses.

.+

The method is appl~he calculation of local heat-transfer rates
on a yawed circular cylinder at a stream Mach number of 6.9. Compakkon
of the results of this #E’Wi@A~yit~ some experhental data indicates
good agreement for small yaw a@les but at the larger yaw angles of 60°
or more the theoreticallll~redlctedheat transfer is about ~ percent less
than the measured valuEs.

-.~~- . “’ >
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INTRODUCTION
S9 *-. ● J“

are increased, the problem of aerodynamic heatingAs flight speeds
becomes more acute and reqtires that every possible means betivestigated
for alleviating the heat transfer at critical locations on missile or
aircraft configurations. One such critical location is a sharp leading
edge or nose where the local heat transfer becomes very large because of
the thin boundary layer which has just begun to form. Appreciable reduc-
tions in heat transfer to the forward regions of wings and bodies may
therefore be obtained by rounding or blunting the leading edge or nose.
(Another advantage of a blunt entry section over a sharp section is that
heat may be removed more effectively from the blunt section by heat
conduction or internal cooling). Recent theoretical and experimental
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investigations (refs. 1 to 4) as well as ;arly experimental results
(ref. ~) have indicated that further reductions in heat transfer to blunt
leading edges can be obtained by yawing or sweeping the wing.

Inspection of the laminar boundary-layer equations for a yawed ‘
infinite cylinder in an incompressible flow with a Prandtl nuriberof
unity and negligible viscous heating shows thht both the chordwise flow
and the temperature distribution are not affected by yawing the cylinder
(ref. 1), that is, the temperature and chordwise velocity distributions
are independent of the spanwise flow component. The solution for this
case (ref. 2) then shows that the heat transfer decreases as the squsre
root of the cosine of the yaw angle. This decrease in heat transfer is
due to the increase in boundary-layer thickness which occurs at a given
point on the cylinder as the yaw angle is increased.

In a compressible flow the independence principle for the yawed,
infinite cylinder no longer applies since shear stresses associated with
the spanwise flow will affect the temperature distribution directly, as
well as affecting the chordwise velocity profiles through the resulting
density changes, (refs. 6 to 8). An analytic solution of the general
ptoblem of heat transfer to yawed infinite cylinders in canpressible flow
is at present virtually impossible so that recourse must be had to an
approxhate solution such as can be obtained from a suitable extension
of the integral methods (refs. 9 to 12). The range of validity and
accuracy of a solution of this type cannot be determined without com-
parison with mathematically exact solutions or experimental data. As far
as is known, the only exact solution available for the compressible flow
problem is Crabtree’s (ref. 8) in which ~~ferential equations for
Prandtl number unity and zero heat transfer are solved in a linearized
fOrm. .‘“s’.

The purpose of the present paper is to present a theoretical inves-
tigation of the compressible laminar bounda&”@er on yawed infinite
cylinders and to compare the results with sme experimental.data showing
the effect of yaw on the heat transfer to afkbmlated leading edge
(ref. 3). The theoretical analysis is based on an integral method wherein
a kinear viscosity @gperature relation is used and the boundary layer is
assumed to have one thichess. The latter assumption simplifies the cal-
culations considerably since the simultaneous solution of only two differ-
ential equations is required to obtain the local heat-transfer rates. A
more general.method would involve the simultaneous solution of three
differential equations; one for the thermal boundary-layer thichess, and
two more for the boundary-layer.’thicknessescorresponding to the chord-
wtse and spanwise components of &- veloci~ bou&kry layer.
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boundary-layer coordinate
cylinder ads

boundary-layer

boundary-layer

time

mass density

coordinate

coortite

parallel to surface, normal to

parallel to surface aud cylinder axis

normal to cylinder surface

velocity in x-direction

velocity in y-direction

velocity in z-direction

pressure

dynamic viscosity

kinematic viscosity

static enthalpy, %T

thermal conductivity

static temperature, %3

stagnation temperature, %

recovery temperature for local ~ = O

stagnation ent~py (eq. 6)

cplJPrandtl number, —
k

specific heat at constant pressure

constant in equation of state for gases

Dorodnitzyn variab~e ~eq.,*1O) J”
..- .....
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ti local stagnation density

A boundary-layer thiclmess

w: =—

&=H-~=H-~~

>.

in q coordinate system

f=== H-h%
, thermal-profileparameter

%’ % - Cp%

s Sutherland constant

WA RM L55F09

chordwise velocity-profileparameter (eq. (15 ) )

B1, B2, B3 .*. coefficients

e momentum thickness in

5* displacement thiclmess

in thermal profile (eq. (18))

q coordinate system (eq. (22))

in q coordinate system (eq. (23))

& thermal-profileparameter (eq. (26))

T energy-loss-profileparameter (eq. (27))

so’%’%””” constants in expression for q (eq. (28))

Ml

%

L

UN

Um

%

x= x/L

local chordwise Mach number

local heat-transfer rate at
transfer to wall)

characteristic dimension of

external to boundary layer

wall.(negativefor heat

body

velocity component normal to cylinder axis on stagnation
streamline ahead of cylinder

resultant velocity ahead of bow shock (flight velocity
of cylinder)

resultant Mach number ahead of bow shock

.—— .—— . ——
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P yaw angle of cylinder (measured from a line normal to
resultant stream direction)

F ‘% (eq. (43))function of 1 and —

%0

% chordwise component of Mach number on stagnation streamline
ahead of cylinder

CP pres8ure

D diameter

7 ratio of

coefficient

of circular cylinder

specific heats, 1.400 used throughout

hc local heat-transfer coefficient

Iic average heat-transfer coefficient

‘SL reference

z) $ computing

Subscripts:

Reynolds number,

parameters (eqs.

Ps

(A3) ud(A4)) .

1 local.conditions external to boundary layer unless
otherwise noted

w conditions at wall

m conditions ahead of bow shock

s conditions just behind normal bow shock

10 conditions external to boundary layer at stagnation”line

“.

5
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THEORY

Derivation of the Integral

WA R14L55F09

Eqwtions

The boundary-layer equations for a three-dimensionalflow are
obtained by application of the conventionalboundary-layer assumptions
to the general equations governing the motion of a compressible,vi.s-
cow, heat-conducting gas (refs. 7 and 13). Tko of these assumptions
which may be emphasized for the present application are (1) the boundary-
@yer thickness is small compared with some characteristic dimension of
the body, and (2) the pressure gradient normal to the surface may be
neglected provided that the boundary-layer thicbess is small compared
with the local radius of curvature of the surface. Thus, for example,
the boundary-layer equations are expected to be va13.deverywhere on a
circular uylinder except in a separated region provided that the stream
Reynolds number base-don diamter (or radius of,curvature of the
leading edge) is large.

,,

The boundary-layer eqyations for steady flow on an infinite yawed

cylinder are obtained from the three-dimensionalequations

and —=0. The boundary-layer coordinate system used is
$

followhg sketch:

with~=O
&

defined by the

The equation of continuity is then

(1) ,
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and the equations of motion in the x-, y-, 4!d z-directions are
written as

~~+wh=dpb
ax az ()az az

?P
“z

where z is normal to the surface. The ener~ equation is

Then, for convenience, a

whereupon equations (2),

stagnation enthalpy is defined as

$H=h+$+F

7

(2)

(3)

(4)

written as

(3), ~d (5) may be combined to yield

(5)

(6)

for constant ~ and U. The chordwise pressure gradient impressed on

the boundary layer is obtained from equation (2) evaluated outside the
boundary layer, that is, outside the region where viscous effects are
important, as

. ..

—— —.. .... _____ .— -
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which is~Bernoullits equation. The equation

P = pRT

WA RM L751?09

(8)

.

of state for a perfect gas

(9)

is used throughout. +

Equations (2) and (7) are integrated across the boundary layer
in ref. U) and by using equations (1), (4), (8), and (9), together
with the Dorodnitzyn variable

the results may be expressed as

and

(as

. .

(lo)

(11)

(I-2)

— -----
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for the bouwkry conditions at ~ = O of u = O, v = O, w = O, and

%=0 andat ~=1, u=u1, v=~, ~=1, and a -0 where A
ap

is a universal boundaiy-layer thickness. Note that these equations are
of exactly the same form as the corresponding equations of reference 11
for two-dimension@ flow. The spanwise component of the flow, however,
is involved directly in the density-ratio integral of equation (n) and
in the stagnation enthalpy integrals of equation (U) as will be shown
later.

.

Velocity and Enthalpy Profiles

An approximate solution to equations (11) and (12) becomes possible
after specifying the velocity and enthalpy profiles. The chordwise
velocity profile will be described by the conventional fourth-degree

polynomial in V* = 1. A fourth-degree polynomial,is then used for the
A

spanwise velocity profile in order to satisfy the requirement that both
profiles must be of the same shape in the Umiting case of a yawed flat
plate. The stagnation enthalpy profile willbe expressed as a fifth-
degree polynomial which has resulted in acceptable engineering accuracy
for the heat transfer to an unyawed cylinder when ~< Te (ref. U).

The coefficients of all profiles are determined from specified conditions
at the edge of the boundary layer (q = A) andat the wall (q . O) so that
the original eqmtions of motion (eqs. (1) to (7)), after being transformed
to the new variable q, are satisfied when eval-mted

The profile coefficients can be simp~fied if a
relation of the form

at the wall.

Vi.scosi@-temperature

(13)

~ is a function onlyof x with ~is assumed where the quantity
Tw

determined from the given values of Tw by any acceptable method such as

Sutherland’s viscosity-temperatureequation. In the following derivation,
equation (13) is actually used in the ticinity of the wall only,.and, as
will.be seen, the final results in the form of a heat-transfer coefficient,
for example, are automatically expressed in terms of ~

~ may also be evaluated from ~ according to the best

mation. In the practical application of these results or

. .. .--—— .-—-.———-. -— ——— —.——

and ~ -where

available infor-

for the purpose

-—.—.——
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of comparisonwith experimental data, however, it is usually desirable
to use a reference viscosity and conductivity such as K. and ~.

Consequently, the problem arises as to the proper evaluation of the
ratios ~~pa or QIk. According to the above considerations,and

since p andm

ratio should be
written as,

& never enter the basic derivation,

obtained from the Sutherland equation

w conductivity ratio should also be determined from
information.

the viscosity

which would be

equally accurate

The chordwise velocity profile may nowbe writtenas (ref. 11)

(14)

which satisfies the conditions at ~ = 1 that

u—= 1
U1

()aauo—— =
aq*2‘1

The relation for A is obtained from equation (2) (transformedto q
and evaluated at q = O) as

. ●☛

——
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after also using

Application

v 0>=

()P1 P1* 2 dul ~2
A= ___ &

11

(15)

equations (4), (8-), (9), and (13).

of the same procedure to equation (~) shows Wat, at

/-

Hence, the required spanwise profile can be written as

%= 2(J*)-2(’*)3+(’-04

(16)

(17) .

which at T* = 1 gives

()L.1
VI

()av=o
am V1

$v=o()aq++p‘1

Comparison of equation (17) with equation (14) shows that, for a flat
plate (A = O), the two profiles become identical as would be expected.

.—— .—...—. —— . ..._. _. —. ——— —.___—_ ._._ —— .—..
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The stagnation enthalpy profile is written as

where the bountiry conditions at 7* = 1 are taken as

%=1

with the result that

The coefficient ~ is

the x, q coordinates
result can be expressed

\

B4=5-4~-3~-2B3 I
(19)

.

derived from equation (7) which is transformed to

and evaluated at the wall (u = O, w= O). The
as

after using equations (4), (9), and (13) and the definitions of
T. The first derivatives of the velocity profiles are obtained
equations (14) and (17).

(20)

H and
frcm

.

.—— —
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The third thermal profile coefficient ‘3
is derived from the

.

13

first derivative with respect ~o q of equation (7) (expressed in the
x, q coordinate system) evaluated at the wall.. ti order to obtain

the final expression for
.()

~,asgiven below, note that b .0
T @

()and>- = O from equations (1) and (10), respectively. Also
Vx+o

equations (15) and (20) have been used to swply expressions for A2

and the quantity
[%y+($~]va

The result may be written as

where derivatives of
have been used where

the velocity profiles from eq&tions (14) and (17)
necessary. TIE coefficient B1 in equation (18)

will be determined from the solution of

Expression of Profile Integrals

the integral equations.

inTermsofhand~

The various profile integrals in equations ~11) and (12) cm nowbe
evaluated in terms of 1 aud ~ which are the two basic parameters to

he determined from the simultaneous solution of these two equations.

~us, from equation (14) and the definition of a momentum thickness
in the ~- coordi~te sysi%mj there is obtained

Similarly, a displacement thickness in the x, ~ plane (analogous
the displacement thickness in incompressible flow) is expressed as

(22)

to

---- .—-— ..- —-_ _-_-. .-.. .. ..— —— . . . . . ——.—— —— —-— -
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hTThen from the definition of H and ~ and the relation — = —, the
P T1

density integral may be expressed as

(24) .

.

by means of eqyatim (22) and (23). The last integral on the right in
equation (24) becmes by virtue of equation (17)

(25)

‘* in eqyation (24) is evalmted from equa-The integral expression ~

tions (18) and (19) as

(26)

where equations (20) and .(21)are used to express ~ and B3 as

functions of A. The integral term in equation (12) is evaluated in
the same way and yields

. . —._ —.—.
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and

15

(27)

values of the a’s depend only on the type of thermal profile used
are listed below for the fifth-degree profile used here.

%
= 0.33173

%= -0.14603

‘%?= -0.05317

a3 = -0.01389

Equations (11) and (U2) may now
by introducing equations (22), (23),

c%= -0.00357 I
(28)

Y’ = -0.00079
J

be written in a more convenient form
(24), (25), (26), and (27); thus,

and

(29)

(30)

— -–-.—.—. — _.— .——
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where

The external spanwise velocity V1 “maybe expressed as a function of

temperature and the local chordwise Mach number Ml as

2VI T1*
—= —.

( )
1 + z#M12

25Tl T1
(31)

In principle, equations (29) and (w) can now be solved for A and -
~ by a suitable numerical procedure for any given distribution of U1

and ~. Before the computation can be started, however, the initial

values and first derivatives at x = O of A and & must

(See appenti. ) ‘
L

be known.

General Expression for the IOcal

The local convective heat-transfer rate

Heat Transfer

is defined as

Introducingthe transforzwtion to 7* and using equation” and (18)
and the definition of & result in

A heat-transfer parameter which depends only on the yaw
stream conditions and wall temperature is then obtained
as

Mw&!z!i!$z!i’,

(32)

angle for given
A

frm equation (32)

——— ——.
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%#

rQJI’@%(%- T1*) pw cm P

where for a symmetrical cylinder with detached bow wave

,

%J-& ~~— .
Cos ~ mm

This latter relation would be only approximate for an asymmetrical
cylinder..

Application to

Initial values of A and

Stagnation Type of Flow

~. - In the vicinity of the stagnation “

lihe which occurs on a blunt leading edge for both the yawed and unyawed
cylinder, ul approaches O as x approaches O. Then, in order to avoid

infinite VdUeS Of : and ~ at x = 0, the 13ro following conditions,
dx

as obtained from equations (29) and (~), must be satisfied at x = O:

aud

(35)

dul
where eqwtion (15) has been used to supply a relation between A2,

-&?
and A. The expressions for ~, ~, ‘~, and ~ are introduced iB-ttI.

A
equations (34) and (35) from equations (22), (23), (26), and (27) with

,

dbd

—-. -.— _.. _ _____ ._
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% ~d B5 (from equations (20) and

parameter Bl may then be eUminated

‘%and the following quadratic for —
Tlo

(.-)(aY+{”’[&F’

NACA RM L55F09

(21)) evaluated at x = O. The

between equations (~) and (35)

results:

+ &’5) + $(% + %)] -

(

( )[T1* ~X3+
1}

-L(1 - ~) -—-
Tlo 630 15

where for U1 = O

\

since

2q 2= Vm = 7RTJQ2 sin2 J3

kw%@#!m””” ‘

(36)

(37)

.

—.—- —
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and

Then, for given values of Mm %and B, equation (36) is solved for —
TIO

as a function of 1. Typical.results for this calculation are shown in
figure 1 for various values of %* T .

/%
The corresponding values of B1

may be found frcm

‘1

eqqation (35) as’

(x)

where equations (20), (21), and (27) evaluated at x = O have been used

to obtain ~.
A

Recovery temperature and heat-transfer coefficient at x = 0.- For

the condition of zero heat transfer, ~=0 andth e wall temperature ~

equals the recovery temperature Te. Cmbining eq~tions (X) and (32)

and using these conditions give an expression for Te which is

Then defining a recovery factor r in terms of the local temperature
outside the boundary layer results in

.— . ..— .. —-— — —_- _ .—
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Te-T
h %+&

r–
‘Tl*-~

=1+4(1-0)

%+34

NACA RM L55F09

.

which gives for values of u near unity r ~ @ since equation (40) is
almost independent of A. (Actually,for zero heat transfer the value
of A must satisfy equations (39) and (36) with Tw = Te.) Tbls value

of the recovery factor is in good agreement with the results of an exact
analysis by Schuh (ref. 14).

A heat-transfer parameter using the conventional definition for the
heat-transfer coefficient

%
he=%-Te (41}

my now be formed by mibstituting equations (~) and (39) into equa-
tion (33) so that

where all quantities are evaluated at x = O. It“maybe noted that this
relation is-expected to apply in the vicinity of the stagnation line for

()

~

()

ml
an isothermal cylinder since =0 and = O as shown

h X=O G x+

U1

()

dul
in the appendix and lim — = — . The function

X+o x ~ X=o

(43)
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appearing in equation (42) has been computed with u = 0.7 for a large

/
range of T1* Tlo and the results are plotted against l$/T1o in fig-

ure 2. This figure shows that,-regardless of the values of Mm and ~,

the function F depends almost entirely on ~ T
lb

where

%%
1 + +%?

—=—

‘% %*l+&#cos2B
(44)

from equation (37). Thus, a numerical

of ~, l&, and ~ could be used to
1

the heat transfer along the stagnation
a = 0.70 is

expression for F as a function

give a udversal correlation for

line. Such sm expression for

(45)

with a maximum error Qf

fig. 2.) The resulting
and (45) is then

about 4 percent for 2.5 >.—

$>0”’0” ‘see
correlation parameter from equations (42), (44)

(46)

which is a function of the yaw apgle ~, the stream Mach nuniber ~, and
the wall-to-smtion-temperature ratio ~/T1*. The quantity p

lJ%

depends on the chordwise component of the Mach nmiber just behind the

()
shock ~s according to the isentropic relation

~T~ -+,. .

. — . . . .—.————.—. .—. .——— ———— ——- .-——
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.

(47)

It should be noted at this point that by analogy with the results of
reference U equation (46) is expected to underestimate the heat transfer
coefficientby as much as 10 to 30 percent when ~ > Te (see fig. 3,

ref. n).

AppMcation to a-circular cylinder.- The velocity-gratientparameter

in equation (46) is evaluated from a modified Newtonian type pressure
coefficient (ref. 15) which is written for a circular cylinder as

where D is the cylinder diameter. This equation modifies the usual
expression for the Newtonian pressure coefficient (ref. 16) so that the
correct pressure coefficient is obtained
analogous equation may be easily derived
shape. Differentiating the equation for
respect to x and evaluating at x = O

d2w /

at the stagnation line. An
for any other cross-sectional
a circular cylinder twice with
give

wrnow’s equation (8) requires that

4)[dul 1 d2pl
—= -——

X+o M Plo &&

L/2

(48)

(49)

—. .-. —
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or introducing

S&i&
●

23—— __

the chordwise velocity ~ behind the shock gives
s

(50)

This rehtion has been plotted against the crossflow Mach num-
ber ~ =& cos ~ ti figure 3where it is compared with some experi-

m
mental results on cylinders. The experimental values shown are the
results of some previously unpublished data obthined in the Gas Dynamic
Branch of the Langley Laboratory. The length of the vertical line
through the data points corresponds to the maximum exper@ental error.

transfer.- As an indication of the accuracy of the present method for the

condition of zero heat transfer, the chordwise velocity profile at x = O
is comps.redwith the results of Crabtree’s linearized solution of the
same problem (ref. 8). ‘I%e chordwise profile givenby equation (14) is
transformed back to the z-plane byme~ of the relation

(51)

which is the inverse of equation (10) combined with the expression for A

h’ ‘1*from equation (15) evaluated for ~ = T1* and — = — corresponding

~%

to the conditions of zero heat transfer, u = 1, and the vi.scosity-
temperature relation of reference 8. The density ratio in the above
equation, for these conditions, is written as

@=@%&$@$g@“:’

.. .-. —————— .. .
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4(17q5 + 4(qq6 - 4(@)7 + (*)q

}

from the definitions of H and z and equations (4), (9), (17), ad

(37). ~ert~ t~s deIIsiW ratio b t~ first equation and integrating
gives the final required relation between z and ~. me Wue of A
required in equations (14) and (51) was obtained from equation (36) for
these same conditions and is 7.249.

The results of this calculation for a spanwise Mach number of unity
are shown in figure 4 where /u ul is plotted sgainst the distance parsm-

()

dul ~
1/2 ,

eter — —
dxv

z. The reasonable agreement between the presen’tmethod

1-o”

and Crabtree’s more exact analysis indicates that the compressibility
effects, in this particular case, are predicted satisfactorilyby the
approximate integral,solution.

COMPARISON OF THEORY WITH ~ m

The experimental data of reference 3 are representative of an average
heat-transfer rate per unit area or, alternately, the total heat-transfer
rate for the forward half of

I!@
eter of the form

r

pmu~
f ks —

us

angles as shown in reference

a circtiar cylinder: A dimensionlessparsm-

was found to correlate the data for all yaw

3; me theoretical analwis aml.ied to the
local heat-transfer coefficient at the stagnation l& yiel-& for this
same parameter the expression .

lGG”
.—... . -.+-99 . ..
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from equation (46) with ~ = &k~ (~ and a being assumed constant)

and %=~. This has been plotted in the lower part of figure 5 for
D

w= 6.9, T1*=12000R ~d~= 0.2, 0.5, 0.8, corresponding approxi-

1

(
mately to the experimental test conditions except for %

)
—=0.2 . com-
Tl+

parison of theztheory with the data indicates that the measured effect of
yaw on the av&ge or total heat transfer on a half-cyllnder is consider-
ably less than the theoretically predicted effect on the local heat trans-
fer in the vicinity of the stagnation line. Thus, in order to obtain a
more complete comparison of the theory with experiment, it is necessary
to calculate from the theory the local heat transfer over the entire haU?-
cylinder. This calculationwas carried out (according to a general proce_-
d&e outlined in

tith & =6.9,

the appenti) for two angles of yaw, 13= 0° -d f3= 60°)

dTw/dx=O, ~=0.5md 0.2, and T1*=12000R.T,*
L

ml
The VdtiS of Ml and ~ recplred in the calculation were obtained

from the faired curves shown in figure 6. fiese curves are based on the

(\
‘1e~er~nw data included in this figure as well as VdLES of v

computed from the data shown in figure 3. The data
ure 6 were computed directly from measured pressure
isentropic relation

2M12”= —
Y-1 (-)-

y-1

Plo 7

PI

\= Jx=o
points shown in fig-
data according to the

which, from intiscid theory for yawed infinite cylinders, would depend
only on the value of ~ .- Consequently, since some of the data from

w
reference 15 show considerable scatter, some additional data (previousl~
unpublished) at a comparable ~m have been included. Then largely on

~ = 4.08 aud the results of figure (3), thethe basis of these data for MN

erratic data for 0.5 > ~ > 0 could be overlooked and the curves shown
result.

, ; ‘ ?-\**:;

.
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The results of the calculation are shown in figure 7 where the ratio -

‘%/(%) is ~lotted against X for the two yaw angles and temperature
X=o

ratios considered. Note that the variation of %/(%) with ~w angle
X=o

snd temperature ratio is not very large and, for practical purposes, could
be considered a function of X only. Also included in figure 7 are the

initial values of the basic theoretical parameter Q

%(%? - %*)J%

from equation (33). The present method fails for h > 12 (see appendix)

which occurred in all cases before ~=x
4

as indicated in figure 7.

However, sufficient information was obtained to permit a reasonable

extrapolation to

calculations.

The average

tion over ~ of

z=~
k

which was used as

heat-transfer coefficient

the local c~uted values

(~ - T,)= where T, was taken as the experimental value according to

the basis for the following

5C was obtained by lntegra-

Of ~ and then division by

the upper part of figwe 5. These average heat-transfer coefficients were

r

~r I@ pm
then used to compute the values of the parame — —

%0 P.UQ
which are

shown in figure 8. (Accurate values of ~/~ and ~/~ were used in

computing this parameter). The experimental data in the form of this
same parameter (ref. 3) are also plotted in figure 8. Cmparison of the
theoretical values with the experimental data reveab that the predict&d
heat transfer is about ~ percent less than the expertiental results for
a yaw angle of 60° whereas at a yaw angle of OQ the agreement is good.
The reasons for the discrepancy at large yaw angles are not yet clear;
however, at least part of the difference may be due to the configuration
of the test’model used in reference 3. The finite length and end shape
would both tend to make the test cylinder appro~te something between
an infinite yawed cylinder and a pointed body of revolution at angle of
attack so that the measured heat transfer could possibly depend on the
distance from the end as well as the yaw angle. Actually, in view of the
appro-ting assumptions involved in the theory (mainly, the universal
boundary-layer thickness and the linear viscosi~ relation) and the possi-
bility of certain bdeterminate factors in the exper-nt (such as end
conditions and spanwise heat conduction), the agreement between theory
and experiment is probably as good as can be expected.

On the basis of the results of the present method at the stagnation
Mae (eq. ~) and Schuh’s theoretical results (ref. 14), the value of a

t

ui~.’, .....-
.
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“local” recovery factor would be

Te-T1 -
r=

T1* - Tl =6 /

27

(53)

‘Ibisassumption cannot be compared directly with the experimental values
of reference 3 which represent an average recovery factor or equilibrium

,’&mperature for the condition of zero totil heat input to the entire half-
cylinder. However, an average equilibrium temperature maybe defined and
e&luated from eq~tion (53) with the result that

where equation (37) has

figure 6. This average

been used and

Te/T1*, which

T1/!lo depends only on Ml from

is a function-ofthe yaw angle only

for a given &, is compared with the experimental values in the upper

part of figure 5. Although exact agreement between theory and experiment
is not expected since the local heat transfer is not everywhere zero in
the experiment, the use of equation (53) is confirmed in this case.

CONCLUSIONS

An integral method has been developed for the calculation of the
compressible laminar boundary layer on yawed infinite cylinders of arbi-
trary shape and with arbitrary wall temperature distribution. In general,
the method requires the numerical solution of two sh-il.taneousordinary
first-order differential equations. At ‘thestagnation line of a blunt
cylinder the solution reduces to a set of algebraic equations which result
in a general correlation equation for the heat transfer in the vicinity of
the stagnation line. An expression is also derived for the recovery fac-
tor which is in good agreement with an exact solution and sme experimen-
tal data. The chordwise velocity profile at the stagnation line as com-
puted from the present method for zero heat transfer and a Prandtl number
of unity is also in good agreement with a more exact solution.

-T~ ~2.4 - ,.,.-.—.——... .

-——. —— ___ .—. . — .—. —. —.—.. .————
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The method is applied to the calculation of local heat-transfer
rates on the front part of a circular cylinder at a stream Mach number
of 6.9 and angles of yaw of 0° and 60°. TM results of this calculation
indicate that the variation in local heat transfer around the surface
of the cylinder has very little functional dependence on yaw angle or
wall temperature; Comparison of the calculationswith some experimental
data, which shows the effect of yaw on the average heat transfer to a
simulated lea-edge, gives good ~eement at small yaw angles but at
a yaw angle of 60° the theoretical Qeat transfer is about @ percent less
than the measmed value. This discrepancy maybe caused partlyby inde-
terminate factors in the,data as well as the simplifying assumptions
involved in the theory.

Langley Aeronautic&l Laboratory,
National Advisory Committee for Aeronautics,

Langley lHeld, Vs., June 7, 1935.
.
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APPENDIX

CALCULATIONPROCEDURE

General.Method

EqmtiOns (29) and (30) are written in the form

and

(A2)

where the parameters Z and @ have been introduced so as to avoid the

d%l
me of the second velocity derivative — which iS diffictit to ObtdIl

&2

accuratelyfrom expertiental data. The quantity RSL is the Reynolds

number at some reference point, for example, just behind the bow shock on
a blunt cylinder. The computing parameters are de’fined as

.

(A3)

. . . -

‘+==== “ ‘ .

. . ...—.-— —~- -.. — —.———-
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(Ak)

“where equation (15) has been used to provide the relation between h and
A. For convenience, all quantities needed for the solution of these
equations are listed below:

A* 2
~-$1-*-33—=.

A

[

a- 1

(22)

(23)

(26)

(27)

(A5)

(A6)

.

.

—
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T1* ‘~ Tl*

( )

1 + .+%2
—=— —= 1 + 912
1- T1 T% -12

1 + .~~ COS2 p

(A7)

where eqution (37) has been used in the last expressi-on. Equations (A5)
and (A6) are obtained from equations (20) and (21) with equation (31) used
where necessary. The simultaneous solution of equations (Al), (A2), (A3),
and (A4) for Z, X, ~, and B1 can now be carried out by any suitable

graphical or numerical procedure. The values of ul (or Ml), ~, T1*,

~, and ~ must be given. A typical numerical procedure is applied to
the same type of problem in reference 12.

Initial Values ,

Blunt leading edge.- In order to start the integration the values
x= o of z, ‘> @J ~Y ad ‘*ir f‘St ‘rimtives ‘nut be ‘m -

a blunt cylinder the initial values of h and B1 are obtained from

equation (36) (or fig. 1) and equation (5). !llhecorrespondingvalues
Z and @ may then be obtained from equations (A3) and (A4). For the

at

For

of

dO ~d ~
condition that

z ax
are finite at x = O on a blunt cylinder,

()it can be shown frcmnequations (29) and (30) that ~ =0 and
dx ~+

()ml ()d2ul= O provided that — =0 cmd
()

% 0.
-G X4 &

Then from
dx x+’

X=o

()equations (A3) and (A4), it follows that m =0 and
()

!%! 0.
G x- &K x*=

Sharpleading edge with ~#O.-At asharp leading edge A=O
dx

which requires that (X)X4 = O from equation (15). Hence (Z)xa = O

and (~)x~ ‘ 0 from equations (A3) and (A4).

Substitution of the values of A and dA/&$ from equation (15)
into equation (29) and setting X = O result in

..-— ..——. —-—.—- ...——. .- ._. _. —_.. _- —- —. .—.—.-— —
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()The required expression for w
G ~~

after using equation (15), setting A
which gives

is then obtained frcm equation (A3)

. 0, and inserting.equation (A8)

(A9)

.
where for a ,sharpleading edge the quanti@ ~L would be designated as

P1*L

()
— U1
P1* x-“

The initial value of B1 is obtained as

(Ale)

by substituting the values of A and dA/dx from equation (15) and q/A
from equation (27)‘intoequation (30) aud setting X = O. The required
Vahl,(3S of ~ and B3 are evaluated fran equations (A5) and (A6) with

h=o. It is of interest to note that, for ~ = O, ~ = O from equa-

tion (33), and then equation (AIO) reduces to equation (@) with A = O.

The initial valuE of ~ is obtained by using the derivative Of
d%

equation (15) in the derivative of equation (A4) and setting A = O. The
result is

—
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[)
% ~,

after using equations (A8) and (AI-O). The expression for ~

too lengthy to include here, particularly since
convenient, is not essential to the integration

Ssmple Problem

\- /x=o

this expression, although
procedure.

The present method is applied to the calculation of local heat-
transfer rates on a circular cyM.nder at a stream Mach number of 6.9,
mlq
—=0, ~ = 0° and60°, and %—=0.2 andO.5.
dx T1*

Typical results of

this calculation are shown in figure 9 where Z, A~ ~, ad ~ are

plotted against ~. Note that in all cases 1 goes to I-2at some value of

(
i< z i *Z

4 4 )
corresponds to 90° back on the cylinder as shbwn in fig-

ure 9(a). The calculationbreaks down for X >12 because of the incom-

patible values of Z and ~ required to satisfy equations (A3) and

(Al) for A >12. The physical reason for this is that the local chord-
wise velocity within the boundary layer tendq to exceed the external

dul
chordwise veloci~ due to the large values of — and %

ax
A Sblilar

?l-

phenomena has been observed in certain exact solutions of wedge-type
flows (ref. 17).

.-
.

TT”-;+ -*,
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Figure 3.- Comparison of experl.mntal and theoretical values of veloci@-

gradient parmneter at the stagnation line of a circular cyllnder.
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Figure 4.- Chordwise veloci~ profiles at the stagnation line as obtained
from the present method and as given by Crabtree (ref. 8). Both
curves sre for the conditions of zero heat transfer, Prsndtl number
unity, and spami.se Mach mmiber unity or

!
T1* T% = 1.2, and

p~/P~* = 0.634.
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cylinders. The initial slope of the faired curves was computed from
figure 3. These faired curves were used in the theoretical calculations.
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%= 6.9 @ T1*= MOOOR.
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?

(a) Variation of A with X for the two yaw angles and
temperature ratios considered.

Figure 9.- Variation of camputing parameters with arc length x/D on a .
circulsr cylinder at l& =6.9 snd T1*= 12000R.
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(b) Variation of B1 with ~ for the two yaw sngles and temperature
ratios considered.

FiWe 9.- Continued.
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Figure 9.- Concluded.
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